Financial Time Series Volatility Forecast Using Evolutionary Hybrid Artificial Neural Network

نویسندگان

  • Anupam Tarsauliya
  • Rahul Kala
  • Ritu Tiwari
  • Anupam Shukla
چکیده

Financial time series forecast has been classified as standard problem in forecasting due to its high non-linearity and high volatility in data. Statistical methods such as GARCH, GJR, EGARCH and Artificial Neural Networks (ANNs) based on standard learning algorithms such as backpropagation have been widely used for forecasting time series volatility of various fields. In this paper, we propose hybrid model of statistical methods with ANNs. Statistical methods require assumptions about the market, they do not reflect all market variables and they may not capture the non-linearity. Shortcoming of ANNs is their process of identifying inputs insignificantly through which network produces output. The attempt for hybrid system is to outperform the forecast results and overcome the shortcomings by extracting input variables from statistical methods and include them in ANNs learning process. Further genetic algorithm is used for evolution of proposed hybrid models. Experimental results confirm the lesser root mean square error (RMSE) results obtained from proposed evolutionary hybrid ANN models EANN-GARCH, EANN-GJR, EANN-EGARCH than conventional ANNs and statistical methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

Financial Time Series Forecast Using Neural Network Ensembles

Financial time series has been standard complex problem in the field of forecasting due to its non-linearity and high volatility. Though various neural networks such as backpropagation, radial basis, recurrent and evolutionary etc. can be used for time series forecasting, each of them suffer from some flaws. Performances are more varied for different time series with loss of generalization. Eac...

متن کامل

Investigating an Evolutionary Strategy to Forecast Time Series

Recently many investigations have been published about finding good solutions to forecast time series. Different linear and non-linear approaches and hybrid models have been used successfully. Approaches of using Genetic Algorithms and Evolutionary Programming could demonstrate suitability, too. However, a third current mainstream of Evolutionary Algorithms – Evolutionary Strategies – is hardly...

متن کامل

Evolving artificial neural networks to combine financial forecasts

We conduct evolutionary programming experiments to evolve artificial neural networks for forecast combination. Using stock price volatility forecast data we find evolved networks compare favorably with a naı̈ve average combination, a least squares method, and a Kernel method on out-of-sample forecasting ability—the best evolved network showed strong superiority in statistical tests of encompassi...

متن کامل

Financial Time Series Forecasting Using a Hybrid Neural- Evolutive Approach

The design of models for time series prediction has found a solid foundation on statistics. Recently, artificial neural networks have been a good choice as approximators to model and forecast time series. Designing a neural network that provides a good approximation is an optimization problem. Given the many parameters to choose from in the design of a neural network, the search space in this d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011